Nuclear localization of mouse Ku70 in interphase cells and focus formation of mouse Ku70 at DNA damage sites immediately after irradiation

نویسندگان

  • Manabu KOIKE
  • Yasutomo YUTOKU
  • Aki KOIKE
چکیده

To elucidate the mechanisms of DNA repair pathway is critical for developing next-generation radiotherapies and chemotherapeutic drugs for cancer. Ionizing radiation and many chemotherapeutic drugs kill tumor cells mainly by inducing DNA double-strand breaks (DSBs). The classical nonhomologous DNA-end joining (NHEJ) (C-NHEJ) pathway repairs a predominant fraction of DSBs in mammalian cells. The C-NHEJ pathway appears to start with the binding of Ku (heterodimer of Ku70 and Ku80) to DNA break ends. Therefore, recruitment of Ku to DSB sites might play a critical role in regulating NHEJ activity. Indeed, human Ku70 and Ku80 localize in the nuclei and accumulate at microirradiated DSB sites. However, the localization and regulation mechanisms of Ku70 and Ku80 homologues in animal models, such as mice and other species, have not been elucidated in detail, particularly in cells immediately after microirradiation. Here, we show that EYFP-tagged mouse Ku70 localizes in the interphase nuclei of mouse fibroblasts and epithelial cells. Furthermore, our findings indicate that EYFP-mouse Ku70 accumulates with its heterodimeric partner Ku80 immediately at laser-microirradiated DSB sites. We also confirmed that the structure of Ku70 nuclear localization signal (NLS) is highly conserved among various rodent species, such as the mouse, rat, degu and ground squirrel, supporting the idea that NLS is important for the regulation of rodent Ku70 function. Collectively, these results suggest that the mechanisms of regulating the localization and accumulation of Ku70 at DSBs might be well conserved between the mouse and human species.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cloning, localization and focus formation at DNA damage sites of canine Ku70

Understanding the molecular mechanisms of DNA double-strand break (DSB) repair machinery, specifically non-homologous DNA-end joining (NHEJ), is crucial for developing next-generation radiotherapies and common chemotherapeutics for human and animal cancers. The localization, protein-protein interactions and post-translational modifications of core NHEJ factors, might play vital roles for regula...

متن کامل

Cloning, localization and focus formation at DNA damage sites of canine XLF

Understanding the molecular mechanisms of DNA double-strand break (DSB) repair processes, especially nonhomologous DNA-end joining (NHEJ), is critical for developing next-generation radiotherapies and chemotherapeutics for human and animal cancers. The localization, protein-protein interactions and post-translational modifications of core NHEJ factors, such as human Ku70 and Ku80, might play cr...

متن کامل

Expression Levels of Two DNA Repair-related Genes under 8 Gy Ionizing Radiation and 100 Mg/Kg Melatonin Delivery In Rat Peripheral Blood

Background: After radiation therapy (RT), some health hazards including DNA damages may occur where melatonin can play a protective role due to free radical generation. On the other hand, serious accidental overexposures may occur during RT due to nuclear accidents which necessitate the need for study on exposure to high-dose radiations during treatments.Objective: The aim of this study was to ...

متن کامل

Ku70 Serine 155 mediates Aurora B inhibition and activation of the DNA damage response

The Ku heterodimer (Ku70/Ku80) is the central DNA binding component of the classical non-homologous end joining (NHEJ) pathway that repairs DNA double-stranded breaks (DSBs), serving as the scaffold for the formation of the NHEJ complex. Here we show that Ku70 is phosphorylated on Serine 155 in response to DNA damage. Expression of Ku70 bearing a S155 phosphomimetic substitution (Ku70 S155D) in...

متن کامل

Cloning, localization and focus formation at DNA damage sites of canine XRCC4

Various chemotherapies and radiation therapies are useful for killing cancer cells mainly by inducing DNA double-strand breaks (DSBs). Uncovering the molecular mechanisms of DSB repair processes is crucial for developing next-generation radiotherapies and chemotherapeutics for human and animal cancers. XRCC4 plays a critical role in Ku-dependent nonhomologous DNA-end joining (NHEJ) in human cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 77  شماره 

صفحات  -

تاریخ انتشار 2015